
A&A manuscript no.(will be inserted by hand later)Your thesaurus codes are:03.13.4, 03.13.6 ASTRONOMYANDASTROPHYSICS2.3.1995On Generating Power Law NoiseJ. Timmer1 and M. K�onig21 Fakult�at f�ur Physik, Albert-Ludwigs-Universit�at, Hermann-Herder-Str. 3, D { 79104 Freiburg2 Astronomisches Institut der Universit�at T�ubingen, Waldh�auserstr. 64, D { 72076 T�ubingenMarch 2, 1995Abstract. Based on the theory of spectral estimation wepropose a new algorithm that is capable to produce thewhole variety of possible non deterministic linear time se-ries which exhibit a (1=f)� spectrum. The key point of thenew algorithm is to randomize both the phase and the am-plitude of the Fourier transform of the data according toits stochastic nature. One possible application is the sim-ulation of AGN lightcurves as well to analyze measureddata as to test proposed models.Key words: X-rays: galaxies { methods: statistical1. IntroductionA common phenomenon of Active Galactic Nuclei, whichpresumably harbor supermassive black holes with massesof 106 { 109M� (Rees 1984), is the strong variability thatcan be seen in the observed X-ray lightcurves. This vari-ability is often described as 
ickering or 1=f 
uctuation(Lawrence et al. 1987). The 1=f term describes the distri-bution of power as a function of frequency in the powerspectrum (power density function). A white noise pro-cess would generate a curve with constant power in thespectrum, random walk noise would show a (1=f)2 dis-tribution. The presence of 1=f 
uctuation has also beennoted in stellar mass black-hole candidates (Mineshige etal. 1994).Due to spectral leakage in the Fourier transform {caused by gaps in the observed lightcurve { it is often notpossible to derive the characteristics of the present 
uctu-ation from the power spectrum. Therefore, it is necessaryto simulate X-ray time series of AGN either to judge thedata in a correct manner or to apply other methods toquantify the time variability. A common approach to ex-plain the observed variability is the random superpositionof elementary luminosity bursts generated in the accre-tion processes. If superposed bursts are varied in ampli-tude and shape a lightcurve similar to 1=f 
uctuationscan be created (Lehto 1989). Such a simulation can only

yield an estimate of an actually observed variability. Thusthe 
ickering may not be produced by a superposition ofbursts, but by a self organised critical system oscillating atthe balance of the accretion rate with radiation pressure(Mineshige et al. 1994). Nevertheless it is very di�cult tosingle out physical features which motivate any particularscenario (Begelman et al. 1991).One way to generate data that exhibit a power lawspectrum S(f) � (1=f)� is given in equation (1). In thefollowing the frequency term ! = 2�f will be used.x(t) �X! pS(!) cos(!t� �(!)) (1)where �(!) 2 [0; 2�] is a random phase (Done etal. 1992). Note that this procedure chooses a determin-istic amplitude for each frequency and only randomizesthe phases. All simulated lightcurves will exhibit a trendcaused by the dominating lowest frequency.In this article we show that the time series producedby this algorithm is only a subset in the set of all possi-ble time series showing the desired spectrum. To do this,we will brie
y review some results of the theory of linearstochastic time series in the following section and intro-duce a new algorithm to generate data with a power lawnoise in section 3.2. Mathematical BackgroundThere is a fundamental di�erence between the spectra ofperiodic, i.e. x(t + T ) = x(t), and nonperiodic processes.\Nonperiodic" denotes chaotic as well as (linear and non-linear) stochastic processes. The spectra of periodic pro-cesses show a �nite number of peaks, one in the linearcase, several higher harmonics in the nonlinear case. Thespectra of nonperiodic processes are smooth functions of!. The behaviour of the spectra of linear stochastic pro-cesses is completely understood and some of the results arealso applicable to nonlinear stochastic and even to chaoticprocesses.In this section we will summarize a main result of thetheory of linear stochastic processes. This result is the



2 J. Timmer et al.: On Generating Power Law Noisebasis for the new algorithm to generate power law noisewhich we will present in the next section.We will start with some de�nitions:{ The autocovariance function (ACF) is de�ned as:ACF(� ) :=< x(t)x(t+ � ) >=limN!1 1N N��Xt=1 x(t)x(t+ � ) (2){ The spectrum is de�ned as the Fourier transform ofthe ACF:S(!) := NXt=1ACF (t) e�i!t (3){ The periodogram is the squared modulus of the Fouriertransform of the data:Per(!) := 1N j NXt=1 x(t) e�i!tj2 (4)The notions \spectrum", \periodogram" and \Fouriertransform" are often mixed up in the literature. Here, wefollow the conventions of Priestley (1989). It should bestressed that the spectrum and the ACF as de�ned aboveare quantities that are related to the underlying processand are not related to a realization of the process. Onthe other hand, the periodogram is related to each newrealization and the relation between the spectrum and theperiodogram is the important point to be discussed now.We will start this discussion with the white noise pro-cess and outline the straightforward generalizations to nontrivial processes afterwards.A normal distributed white noise processx(t) = �(t); �(t) � N (0; �2) (5)with mean zero and variance �2 is characterized by theACF:ACF(� ) = �2 �(� ) (6)Thus, the spectrum as the Fourier transform of the �function is a constant:S(!) = �2 (7)The Fourier transform f(!) of a realization of this pro-cess written as real and imaginary part is given byf(!) = 1pN Xt x(t) cos(!t) + i 1pN Xt x(t) sin(!t) (8)A main result of the theory of spectral estimation(Priestley 1989) is that f(!) is a complex gaussian randomvariablef(!) = N (0; 12S(!)) + iN (0; 12S(!)) ; (9)

whose variance does not depend on the number of datapoints. These random variables are uncorrelated for di�er-ent frequencies:< f(!i) f(!j) >= const �i j (10)The periodogram is given by:Per(!) = jf(!)j2= 1N  Xt x(t) cos (!t)!2 +1N  Xt x(t) sin (!t)!2 (11)and as the sum of two squared gaussian distributionsfollows a �2 distribution with two degrees of freedom �22:Per(!) � 12S(!)�22 (12)again independent of N.Since the mean and the variance of �22 are two and fourrespectively, the standard deviation of the periodogram isequal to the mean, i.e.Per(!) = S(!) � S(!) : (13)Thus the periodogram is 
uctuating wildly and itsvariance is independent of N, the number of data points,Per(!) is not a consistent estimator of the spectrum sinceits variance does not decrease with N. These results notonly hold for linear stochastic processes but also for non-linear stochastic and even for most chaotic processes.For linear stochastic processes the spectrum and theperiodogram are obtained by multiplying the results forthe white noise process by the �lter function { here: apower law { that describes the process. For these processesthe variance of the complex random variable f(!) in eq.(9) becomes frequency dependent and is determined bythe spectrum. Eq. (13) remains valid. This is also true fornonlinear stochastic processes and even for most chaoticprocesses. For these processes eq. (10), i.e. the orthogo-nality of di�erent Fourier components, does not hold ingeneral.To summarize the results with respect to the simula-tion problem of power law noise:The standard method of generating these time seriesaccording to eq. (1) re
ects only one part of the stochas-ticity of the Fourier transform of nonperiododic processes,namely the randomness of the phases. Choosing the am-plitudes equal to the square root of the spectrum, it doesnot take into account the randomness of the periodogramaccording to the �22 distribution. In order to create powerlaw time series it is necessary to allow randomness bothin phases and in amplitudes.



J. Timmer et al.: On Generating Power Law Noise 33. A New AlgorithmTo SimulatePower Law NoiseThe new algorithm is based on eq. (9), which connects thedesired spectrum with the variance of the complex randomvariable f(!).The algorithm is de�ned by the following steps:{ Choose a power law spectrum S(!) � (1=!)� .{ For each Fourier frequency !i, draw two gaus-sian distributed random numbers, multiply them byq12S(!i) � (1=!)�=2 and use the result as the realand imaginary part of the Fourier transform of the de-sired data.{ In the case of an even number of data points, for reasonof symmetry f(!Nyquist) is always real. Thus only onegaussian distributed random number has to be drawn.{ To obtain a real valued time series, choose the Fouriercomponents for the negative frequencies according tof(�!i) = f�(!i) where the asterisk denotes complexconjugation.{ Obtain the time series by backward Fourier transfor-mation of f(!) from the frequency domain to the timedomain.Due to the fact that Fast Fourier Techniques can beused to evaluate the lightcurve, this new algorithm is evenfaster than the deterministic method described in eq. (1).4. DiscussionUsing this algorithm the full variety of possible time seriesshowing the same spectrum can be explored. Especially,in case of 
icker noise (Fig.1) where the �rst frequency bincontributes the largest part of the variance, this algorithmensures that the �rst frequency bin does not dominate thetime series in a deterministic manner, but according to itsnatural 
uctuations.Choosing �=2.0 for the simulation, a random walklightcurve is generated (Fig.2). Compared to the 
ickernoise lightcurve such a random walk curve is dominatedby longer timescales. Fig.3 presents a real X-ray lightcurveof the Seyfert Galaxy NGC 5506 as observed by EXOSATin 1986. The corresponding spectrum shows a slope of1.8�0.3 (Lawrence & Papadakis 1993) indicating the nu-merical relation to random walk noise. In contrast to thisthe naked eye would classify the observed variability morelikely as 
icker noise (McHardy & Czerny 1987). This re-veals the main problem of estimating the slope of the spec-trum: Its evaluation depends on the choosen frequencyregime in which the �t of the slope �t is done. Accordingto this, the algorithm is a good tool to judge the methodused to compute the slope of the spectrum.Another application of the presented algorithm is theproper estimation of 1�{errors by Monte Carlo simula-tions in period searches using epoch folding techniques.Using eq. (1) to generate the non deterministic part of aperiodic lightcurve the 1�{error of the related distribution
Fig. 1. (a) Simulated 
icker noise lightcurve (�=1.0, N=1024).(b) Corresponding spectrum and periodogram. The time andcounts units are arbitrary.of the estimated periods is underestimated signi�cantly. Inthe case of the cataclysmic variable RXJ1940.1-1025 theperiod search employing simulated data with eq. (1) yieldsan error of �3 sec (Done et al. 1992). If the new algorithmis applied, the resulting 1�{error is about 5 to 10 timeslarger.ReferencesBegelman, M.C., De Krool, M. 1991, in Variability in ActiveGalactic Nuclei, ed. H.R.Miller & P.J.Wiita (Cambridge:Cambridge Univ.Press), 198Done, C., Madejski, G.M., Mushotzky, R.F. et al. 1989, ApJ,400, 138Lawrence, A., Watson, M.G., Pounds, K.A. et al. 1987, Nature,325, 694Lawrence, A., Papadakis, P. 1993, ApJ Suppl., 414, 85Lehto, H.J. 1989, in Proc. 23d ESLAB Symp. on Two Topicsin X-ray Astronomy, Vol.1, ed. J.Hunt & B.Battrick (ESASP-296), 499McHardy, I., Czerny, B. 1987, Nature, 325, 696
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Fig. 2. (a) Simulated random walk noise lightcurve (�=2.0,N=1024). (b) Corresponding spectrum and periodogram. Thetime and counts units are arbitrary.Mineshige, S., Ouchi, N.B., Nishimori, H. et al. 1994, PASJ,46, 97Priestley, M.B. 1989, Spectral Estimation and Time Series,(San Diego: Academic Press), 389Rees, M.J. 1984, Ann.Rev.Astron.Astrophys., 22, 471
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Fig. 3. (a) X-ray lightcure (detail) of NGC 5506 (EX-OSAT-ME Jan./1986). (b) Corresponding periodogram. The
attening at low frequencies is here due to the �nite observa-tion length.


