
 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/5/2/157
The online version of this article can be found at:

 
DOI: 10.1177/027836498600500216

 1986 5: 157The International Journal of Robotics Research
E.F. Fichter

A Stewart Platform- Based Manipulator: General Theory and Practical Construction
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for 
 
 
 

 
 http://ijr.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://ijr.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://ijr.sagepub.com/content/5/2/157.refs.htmlCitations: 
 

 What is This?
 

- Jun 1, 1986Version of Record >> 

 at UNIV TORONTO on November 10, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/5/2/157
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/5/2/157.refs.html
http://ijr.sagepub.com/content/5/2/157.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://ijr.sagepub.com/


157

A Stewart Platform-
Based Manipulator:
General Theory and
Practical Construction

E. F. Fichter
Industrial Engineering Department
Oregon State University
Corvallis, Oregon 97331 

Abstract

The Stewart Platform is one example of a parallel connection
robot manipulator. This paper summarizes work that has
been done at Oregon State University over the past several
years on this topic. The work has fallen into two general
areas: theoretical consideration of the generalized Stewart
Platform and practical considerations for building a working
machine. Both of these areas are covered in this paper.
The theoretical part of the paper discusses the following

four problems:

1. Given the position and orientation of the end effector,
what are the actuator coordinates?

2. Given the velocity, position, and orientation of the
end effector, what are the actuator velocities?

3. Given the forces exerted on the end effector by the
external world and the accelerations of the end eff&egrave;c-
tor, what are the forces at the actuators?

4. What are the singular configurations of the manipu-
lator? For the Stewart Platform, the singular configu-
rations are positions where the end effector gains one
or more degrees of freedom.

After the theoretical problems have been solved, there are
still a group of practical problems to be tackled when a real
machine is built. How can the general configuration be sim-
plified to make the solution of the equations practical? Once
a configuration is decided upon, what are the construction
considerations for building a real machine? What is the
range of motion of the end effector? What are the necessary
ranges of motion of the joints? What are the implications of
the singularities of the Stewart Platform and what are some
practical ways of solving the problems they cause?

In the process of doing this research, three machines were

built and a computer simulation was written and used. The
most recent machine and the computer simulation will be
described in this paper.

1. Introduction

Most of the literature on robot manipulators is con-
cerned with serially connected mechanisms, that is,
mechanisms whose links and joints alternate with one
another in a long chain. Parallel connection is an al-
ternative type, where the links and joints form two or
more serially connected chains; these chains connect
the base of the manipulator with the end effector.
Figure 1 illustrates simple examples of these two con-
figurations. A start at classifying the many possible
parallel connection manipulators has been presented
by Earl and Rooney (1983). There are also combina-
tions in which part of the manipulator is serial and
part parallel (Hunt 1983).
The subject of this paper is a parallel connection

manipulator called the Stewart Platform, illustrated
simply in Fig. 2. The basic reference for this mecha-
nism is the paper by Stewart (1965), which suggests
using it as an aircraft simulator motion base. Diment-
berg (1965) uses the body supported by six rods as an
example application of screw calculus. Hunt (1978)
suggests its use as a manipulator and mentions some
of its advantages and disadvantages. Fichter and
McDowell (1980) describes some of its advantages and
disadvantages as a manipulator in greater detail.
Fichter and McDowell ( 1983) describes a technique
for determining the value of the joint variable for every
joint of the mechanism, not only the powered joints.
This information is valuable for the practical design of
the joints in each of the supporting legs. Hunt (1983)
discusses some alternative mechanical designs for the
Stewart Platform. A group in Great Britain designed
and built a manipulator based on the Stewart Platform
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Fig. 1. Simple planar (2-di-
mensionalJ examples of
series- and parallel-con-
nected manipulators.

(Powell 1981, Potton 1983). Yang and Lee (1984)
presents a solution to the kinematics of a simplified
version of the Stewart Platform but does not consider
the general Stewart Platform. Yang and Lee (1984)
also presents some preliminary information on a sim-
ulation. In a previous paper Fichter (1984) presented
some of the material on kinematics and differential
kinematics presented here, but this material has been
clarified and expanded for this paper.
The first part of the paper addresses the following

four questions:

1. Given a position and orientation of the end .

effector, what are the necessary actuator coor-
dinates ? This is sometimes called the inverse
kinematics problem for serially connected
manipulators.

2. Given a position, orientation, and velocity of
the end effector, what are the necessary actua-
tor velocities?

3. Given a position, orientation, and external
force and torque on the end effector, what are
the necessary actuator forces?

4. Is the manipulator singular for a particular
position and orientation of the end effector?

These first four questions are initially considered for
the completely general Stewart Platform.

In the last part of this paper, the problem considered
is how to build a practical manipulator. This discus-
sion includes the simplification of the general equa-
tions derived in answering the first four questions, a
description of a computer simulation of the Stewart
Platform, and a description of a prototype machine.

Fig. 2. One of the common
kinematic arrangements of
the Stewart Platform.

. 2. Kinematic Equations for the General
Stewart Platform

The Stewart Platform consists of two bodies connected

by six legs, which can vary in length (Fig. 3). One of
the bodies is called the base and the other is called the

platform. Notice the topological symmetry of each
body relative to the other. This symmetry makes the
assignment of these names arbitrary.
Each of the six legs has one of its end points fixed in

the base and the other end point fixed in the platform.
The locations of these six points in each body are cho-
sen arbitrarily. (There are a few restrictions on the
choice of positions. For instance, if the points in the
base and in the platform are at the corners of regular
planar hexagons, the platform is not always con-
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Fig. 3. A generalized Stewart
Platform with the base and
platform coordinate systems
shown. The six points in the
base and the six points in
the platform at the ends of
the legs are illustrated along

with the vector descriptions
of points b, and p, in both
coordinate systems. The

relationships between the co-
ordinate systems T, R, PT,
and pR are also illustrated.

strained relative to the base.) A right-handed coordi-
nate system is defined at a convenient place in each
body (Fig. 3).
Each of the six points in the base is described by a

position vector, B;, referenced to the base coordinate
system. (Definitions for all symbols will be found in
the Appendix.) Similarly, each of the points in the
platform is described by a position vector pPj, refer-
enced to the platform coordinate system. The left
superscript will be used to indicate the coordinate sys-
tem to which a particular vector is referenced; P is for
platform, and no left superscript is for base. Vectors
will be treated as row matrices unless otherwise noted.

The orientation of the platform relative to the base
is defined by a rotation matrix, R. 

’

The column vectors, a, ~i, and y, that make up this
matrix are the unit vectors along the x-axis, y-axis, and
z-axis, respectively, of the platform coordinate system.
The matrix R can also be used to transform free vec-
tors from the base coordinate system to the platform
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coordinate system. The matrix R will be used in both
of these ways: as a description of the orientation of the
platform relative to the base and as a transformation
matrix.
The position of the platform relative to the base is

defined by a translation that may be written as a vec-
tor, T, from the origin of the base coordinate system
to the origin of the platform coordinate system:

Similarly, the orientation of the base relative to the
platform is defined by a rotation matrix, PR:

The column vectors making up this matrix are the
unit vectors along the x-axis, y-axis, and z-axis, respec-
tively, of the base coordinate system. The matrix PR
will be used in two ways: as a description of the orien-
tation of the base relative to the platform and as a
transformation matrix.
The position of the platform relative to the base is

defined by a translation that may be written as a vec-
tor, PT, from the origin of the platform coordinate
system to the origin of the base coordinate system:

In this equation, the rotation transformation R is used
to find the components of translation vector T in the
platform coordinate system. The minus sign is re-
quired since the vector PT is in the opposite direction
from the vector T.

Equations (1) and (2) give a complete description of
the platform coordinate system referenced to the base
coordinate system, while Eqs. (3) and (4) give a com-
plete description of the base coordinate system refer-
enced to the platform coordinate system.

It is convenient to treat the legs as lines and to rep-
resent them as line coordinates. The most applicable
set of line coordinates are the Plucker coordinates,
which may be determined from any two distinct

points, Q1 and Q2, on the line as shown in Fig. 4 and

Fig. 4. The unnormalized
Pliicker coordinates of the
line through points Q and
Q2 can be decomposed into
two three-component vectors,
S and M’.

in the equations below:

The vector S lies along the line and the vector M’ is .

perpendicular to the plane containing the line and the
origin. The vector M’ is the moment of the vector S
about the origin. These two three-component vectors
are assembled into the six-component vector of
Plfcker coordinates of the line:

It will be useful to normalize the Plucker coordinates
with respect to the magnitude of the vector S:
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where

The vector s is the unit vector in the direction of the
line, and the magnitude of the vector M is the shortest
distance from the origin to the line. Thus vector M is
the moment about the origin of a unit force acting
along the line. The vectors s and M can be assembled
into the normalized Plfcker coordinate vector:

An alternative presentation of the PlJcker coordi-
nates is given by Hunt (1978).

2.1. DETERMINING LEG LENGTHS, DIRECTIONS, AND
MOMENTS

The lengths, directions, and moments of the legs can
be referenced to either the base coordinate system or
the platform coordinate system. First, equations for
these quantities referenced to the base coordinate sys-
tem will be derived and then similar equations for the
same quantities referenced to the platform coordinate
systems will be derived.
To determine these three quantities, we begin by

writing an equation for the vector, Si, from B; to Pi:

In this equation, the point in the platform is referenced
to the base coordinate system. Hence, the coordinates
of the platform point must be transformed to the base
coordinate system:

The first term on the right side of this equation ac-
counts for the translation from the origin of the base
coordinate system to the origin of the platform coordi-
nate system. The second term on the right side of this
equation transforms the components of the vector pPt
from the platform coordinate system to the base coor-
dinate system. These equations may be combined into

the equation below for the leg vector, S; :

The length of the leg, <r,, is the magnitude of vector S t :

The direction of the leg referenced to the base coor-
dinate system, si, is the unit vector along S;:

The normalized moment of the leg vector about the
origin of the base coordinate system, Mi, can be
found by substituting into Eq. (6):

In this equation, the unit vector, si, is used so that the
result is the normalized moment vector as defined in

Eq. (9). The above equation gives the normalized mo-
ment vector referenced to the base coordinate system
in terms of either end point of the leg.

This completes the determination of the leg lengths,
directions, and moments referenced to the base coor-
dinate system. Before we go on to the determination
of these quantities referenced to the platform coordi-
nate system, it should be noted that the direction, sl,
from Eq. (13) and the normalized moment, Mi, from
Eq. (14) can be combined using Eq. (10) to form the
normalized Plfcker coordinates, Ui, of the leg refer-
enced to the base coordinate system.
The equation for the leg vector referenced to the

platform coordinate system can be written using a deri-
vation that is parallel to the derivation used for the leg
vector equation referenced to the base coordinate
system:

PSi =Pp &horbar;~M
~’B; = PT + (Bi R).

If we eliminate pBi,
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Alternatively, since Si is a line vector, it may be trans-
formed to the platform coordinate system using the
orientation relationship R.

The equivalence of Eqs. (15) and (16) can be verified
as follows: substitute for PT in Eq. (15) using Eq. (4)
and collect terms:

Use the identity RT R, factor out R, and rearrange:

From Eq. ( 11 ), the factor in brackets is equal to S; .
This verifies the equivalence of Eqs. (15) and (16).

Since the leg vector is the same vector no matter
what coordinate system it is referenced ~o, the length
of the leg, ai, in either coordinate system must be the
same:

The identity of a, in Eqs. (12) and (17) can be verified
by substituting Eq. (16) into the far right side ofEq. (17).
The direction of the leg referenced to the platform

coordinate system, ps;, is the unit vector along pS~ :

The normalized moment of the leg vector about the
origin of the platform coordinate system, pM;, can be
found by substituting into Eq. (6):

This equation is similar to Eq. (14) except that it gives
the normalized moment vector of the leg vector about
the origin of the platform coordinate system with the
moment vector referenced to the platform coordinate
system.
As above, the normalized Plucker coordinates, PU¡,

of the leg are obtained by combining Psi from Eq. (18)

Fig. 5. The,front and right
side view of the configuration
discussed in the first exam-
ple. The coordinate system in
the base is labeled with

uppercase letters and the
coordinate system in the

platform is labeled with
lowercase letters.

and PM; from Eq. ( 19). These Plfcker coordinates are
referenced to the platform coordinate system.
A relatively simple relationship exists between the

two vectors M¡ and pM; . This relationship is derived
here beginning with Eq. (19):

Expand with Eqs. (4) and (18) and collect terms:

Simplify this using Eq. (14) to obtain

This completes the derivation of the equations for
leg length, direction, and moment. Equations (12) and
(17) with Eq. (11) and either Eqs. (15) or (16) answer
the first question cited in the introduction; given the
position and orientation of the platform, what are the
necessary actuator coordinates?
An example of how these equations are used follows

(see Fig. 5). The coordinates of the end points of the
one leg to be considered in this example are given below:

The rotational and translational relationships between
the two bodies are given below. The equations in this
example are labeled with the general equation num-
bers primed.
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The vector along the leg in the base coordinate system
and in the platform coordinate system is determined
as follows:

The last equation is a verification of the results of Eq.
( 15’). The length of the leg can be found by using
either Eq. ( 12) or Eq. ( 17).

The unit vectors in the base and the platform coordi-
nate systems are determined from Eqs. (13) and (18):

The moment of the leg about the origin of the base
coordinate system may be calculated using either of
the two parts of Eq. (14):

The moment vectors calculated in the two parts of Eq.
(14’) difFer slightly because of round-off error. The
moment of the leg about the origin of the platform co-
ordinate system may be calculated using either of the
two parts of Eq. ( 19) (only the first part of Eq. ( 19)
will be presented in this example).

This result can be verified by using Eq. (20):

This completes the examples of the use of these equa-
tions.
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2.2. DETERMINING THE COMPONENTS OF LEG
VELOCITY

The components of the velocity of a leg are the rate of
change of length of the leg vector and the rate of
change of the direction of the vector. These are com-
ponents of the vector rate of change of the leg vector.
The vector rate of change will be determined using
screw theory. It can be verified that any motion of a
body in three-dimensional space is a screwing motion,
as described by Hunt (1978). At every instant during
the motion of a body in space, there is an instanta-
neous screw axis (ISA), a unique line that the body is
rotating about and translating along. In the general
case, when the body is both rotating and translating,
the angular velocity vector for the body and the linear
velocity vector for a point in the body are parallel if,
and only if, the point lies on the ISA. The pitch, h, of
the ISA is the ratio of the linear velocity, V, of any
point on the ISA to the angular velocity of the body, (o.

If there is no linear velocity, the pitch is zero; and if
there is no angular velocity, the pitch is infinite.

If the Pliicker coordinates, or vectors s and M, of
the ISA are known along with any two of the three
quantities h, V, and cv, then the velocity of any point
in the moving body can be found by using the follow-
ing equation. ( Vectors s and M referred to here are
not related to any of the legs, but describe the ISA of
the platform.)

These vectors are shown in Fig. 6. The vector D origi-
nates at the head of the vector labeled s X M and ter-
minates at point Q. Vector D is not necessarily per-
pendicular to the ISA; it is eliminated below:

This equation is used to find the velocity of point
PP; referenced to the base coordinate system by replac-
ing vector Q with point Pi, as in Eq. (11).

Fig. 6. The ISA of a body is
shown with the velocity, V,
along the ISA; the angular
velocity, oi, about the ISA;
the unit vector, s, along the

ISA; and the moment, M, of
the ISA about the origin. A
point, Q, in the body defined
by vector Q is related to the
ISA by the vector D.

Since the other end of the leg is fixed relative to the
base coordinate system, this is the equation for the
vector velocity of the leg vector referenced to the base
coordinate system.

Now this vector leg velocity can be broken into its
components. Figure 7 shows the relationship between
the leg vector, S, and the leg velocity vector, S; it also
shows the components of the leg velocity vector,
which are given algebraically below:

The equation gives the magnitude of the rate of change
of length of the leg. To determine the vector rate of
change of direction of the leg, s;, the vector rate of
change of the length of the leg is required; this is just
<7,S,.

Note that §i is not a unit vector. The angular velocity of
the leg, A;, has the magnitude equal to the length of
si divided by the length of the leg and the direction of
the cross-product of s; and s; . It is given by the follow-
ing equation:
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The following equations give the same results as
Eqs. (23)-(26), but with reference to the platform co-
ordinate system.

The leg velocity vector referenced to the platform
coordinate system can also be written directly in terms
of the leg velocity vector referenced to the base coordi-
nate system and the rotation transformation between
the two coordinate systems.

The verification of the identity of Eqs. (27) and (28)
follows. Begin by transforming the free vectors in Eq.
(27).

The second term in the curly braces comes from Eq.
(20). The terms in the braces can be simplified as fol-
lows.

Since s is a unit vector, the second term inside the
braces in the factor above is -T. Substitute this factor
into the equation above and factor out R.

The last term in the square brackets will disappear
since it is parallel to the angular velocity, cv, (Fig. 6),
leaving the factor in the braces equal to ~i from Eq. (23).
The magnitude of the rate of change of leg length

referenced to the platform coordinate system is given
below:

Fig. 7. The vector rate of
change, S, of vector S is
shown along with the compo-
nents of S in the direction of
S and perpendicular to S.

By substituting Eqs. (28) and ( 18) into the far right
side of Eq. (29), it can be verified that the rate of
change of the leg length referenced to the platform
coordinate system is the same as the rate of change of
leg length referenced to the base coordinate system.
The vector rate of change of direction, P~i, and the
angular velocity, pA; , of the leg referenced to the
platform coordinate system can either be found in a
manner parallel to Eqs. (25) and (26) or by 

’

transformation of these quantities referenced to the
base coordinate system. Both definitions are given
below:

The above equations give the components of the leg
velocity in terms of the ISA, the linear velocity, V, of
the body in the direction of the ISA, and the angular
velocity, W, of the body. If these parameters are not
known, then the components of the leg velocity can
still be determined if the angular velocity, ~r,v, of the

body and the linear velocity, V’, of some point, Q, in
the body are known.

Consider a point, Q, not on the ISA; its linear ve-
locity is composed of two components, one parallel to
the ISA and one perpendicular to the ISA, as shown
in Fig. 8A. The first component is the linear velocity of
the body along the ISA, V, given by the following
equation:
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Fig. 8. A body is moving
with angular velocity ro, and
point Q in the body is mov-
ing with linear velocity V’. A.
The components of V’ in the

direction of co and perpen-
dicular to (J) are shown. B.
The shortest vector from the
ISA to point Q is shown.

where

Now the linear velocity along the ISA, the angular
velocity about the ISA, and the direction of the ISA
are known. Only a point on the ISA needs to be found
to determine the moment, M, of the ISA about the
origin. The second component of the linear velocity of
Q, N in Figure 8A, is related to the angular velocity of
the body and to the distance from the ISA to the
point, Q, by the equation below (Fig. 8B):

The vector D goes from the ISA to point Q and is
perpendicular to the ISA, as shown in Figure 8B.
Hence, by determining D, a point on the ISA will be
found. In Figure 8A, D points out of the paper and N,
cr~, and D are mutually perpendicular. The unit vector
in the direction of D is found as follows:

The vector D is found by rearranging this equation:

From Eq. (33), the definition of the cross-product and
the fact that co and D are perpendicular the following
equation can be written.

Eliminate the magnitudes of N and D from the above
equations.

Another relationship involving N results from Figure
8A.

Equation (35) is substituted into Eq. (34) to get an
equation for D in terms of known quantities.

This equation is simplified.

Since V and co are parallel, the second term on the
right vanishes.

Now equations for the s and M vectors can be written.

This completes the determination of the ISA and V
from the angular velocity of the body and the linear
velocity of an arbitrary point in the body. These equa-
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tions are independent of a coordinate system. The ISA
and V found are referenced to the same coordinate

system that the V’ and (J) are referenced to. Equations
(24) and (29) with Eq. (23) and either Eqs. (27) or (28)
answer the second question cited in the introduction;
given the position, orientation, and velocity of the
platform, what are the necessary actuator velocities?

Here is an example to illustrate the use of the above
equations. This example is an extension of the one
used above. The angular velocity, 6), of the platform is
[0 0 1 ] radians per second and the linear velocity,
V’, of the point in the platform that is currently at
[3 5 4] in the base coordinate system is [0 0 3]
units per second. The velocity, ’V, along the ISA and
the vector, D, from the ISA to the point are calculated
as follows. Since the given linear velocity is parallel
with the given angular velocity, the point for which the
linear velocity is given must be on the ISA as verified
below.

The s and M parts of the Plucker coordinate vector
for the ISA are calculated as follows:

.

Figure 9A shows the configuration. Next, the vector
rate of change is calculated.

Fig. 9. A. The platform is
translating along and rotat-
ing about the ISA. The mo-
ment shown is the moment of
the ISA about the origin of
the base coordinate system.

B. The scale is expanded by
a factor of five to show the
change in the vector from B, I
to P, as the platform moves
along and about the ISA.

The rate of change of length of the leg is determined
below:

The current position of point P, is [5 9 1 in the
base coordinate system. If the velocity, §,, above is
continued for 0.1 seconds, the position of P, would be
[4.6 9.2 1.3] and the change in length of the leg
would be given by the following calculation:
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This checks, within round-off error, with the value of
&1 arrived at above.
The rate of change of the direction of the leg vector

is determined below:

Figure 9B shows an enlargement of the original leg
vector and the leg vector after 0. seconds of the ve-
locity in Eq. (23’). The figure also shows the A 1 vector.

This completes the development of the kinematic
equations for the general Stewart Platform.

3. Dynamics of the General Stewart Platform

The reason for examining the dynamics of a manipu-
lator is to determine the force or torque required of
the actuators to balance the inertia forces and any
forces applied to the manipulator by the external
world. The dynamic analysis presented here is based
on screw theory as presented by Hunt (1978). Hunt
develops the concept of a wrench consisting of a force
acting along some line and a couple acting about the
same line. The force and the couple are related by the
following equation, where h’ is the pitch of the wrench
and the magnitude of the force,,f; is the intensity of
the wrench.

Figure 10 is a free body diagram of the platform.
There are nine wrenches acting on the platform; six are
exerted by the legs, one by the gravity field, one by the
inertia load, and the last is exerted by the external
world. The wrench exerted by the gravity field has
pitch equal to zero (there is no couple) since the field
is uniform. This paper will assume that the wrenches
exerted by the legs also have zero pitch, which implies
that screw joints are not used in the legs.

Fig. 10. The nine wrenches
acting on the platform.

To ease the development of the dynamic equations,
assume that the legs are massless. The sum of the force
parts of the wrenches acting on the platform must
equal zero.

The inertia force on the platform may be replaced by
minus the mass times the acceleration, and the gravity
force may be replaced by the acceleration due to the
gravity, Pg, times the mass.

If the external force is moved to the right side of the
equation, the left side can be written as a matrix product

where Ps is the matrix of unit vectors along the legs in
the platform coordinate system and f is a vector made
up of the intensities of the wrenches exerted by the
legs. This equation can be expanded.
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A similar development is done for the moment
balance equation.

where PM* is the matrix of moment vectors about the

origin of the platform coordinate system. The sign of
~’CI results from the sign convention used here; this
term can be expanded as follows:

Equations (40) and (42) can be combined into a single

equation by using the Pliicker coordinates of the leg
vectors.

All terms on the right side of Eq. (44) are known, as
is the matrix of PlJcker coordinates. The forces ex-
erted by the legs can be solved for by inverting the
6 X 6 matrix of PlJcker coordinates. An example of
the use of this equation will be given later in this paper.

This solution for the forces exerted by the legs has
assumed massless legs and has also assumed that the
legs exert pure forces. Relaxation of these limits will be
discussed in a future publication. Equation (44) is a
partial answer to the third question cited in the intro-
duction ; given the position, orientation, and external
force and torque on the platform, what are the neces-
sary actuator forces?

4. Singular Positions of the Manipulator

Every mechanism has singular positions in which the
general equations for the motion of the mechanism do
not hold. In series-connected manipulators, the singu-
lar positions result in the loss of one or more degrees
of freedom. In parallel-connection manipulators, the
singular positions result in the gain of one or more
degrees of freedom.
The singular positions of the Stewart Platform are

determined from a screw system analysis, as described
by Hunt (1978). The platform is kinematically con-
strained by six wrenches exerted by the six legs. As
indicated above, the discussion in this paper will be
limited to mechanisms in which the legs exert pure
forces. To successfully constrain the platform, these six
forces must act along lines that are linearly indepen-
dent. When the six lines of action of the forces are

linearly dependent, the platform is in a singular posi-
tion and gains one or more degrees of freedom.
The search for singular positions has thus been re- .
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duced to the search for positions in which the six leg
vectors are not linearly independent. This condition
can be tested for by checking for singularities of the
matrix of the Plucker coordinates, U, of the six legs. If
the determinant of this matrix is zero, the manipulator
is in a singular position.
The general solution to this problem is beyond the

scope of this paper. Particular solutions to the singular
position problem for the practical versions of the ma-
nipulator discussed later in this paper are presented
below.

In a real manipulator, the results of this analysis are
complicated by the other three wrenches acting on the
platform and by the bearing clearances at the joints.

This provides a partial answer to the fourth question
cited in the introduction-Is the manipulator singular
for a particular position and orientation of the platform?

5. Design of a Practical Stewart Platform
Manipulator

The equations derived above are for general positions
of the ends of the legs in the base and the platform.
The construction of a real machine requires that prac-
tical constraints be placed on this general case. Such a
practical machine, which has actually been built, is
described in the following paragraphs. The design aids
and design procedures used in the construction of this
machine are also discussed. Figure 11 I shows some

photographs of the most recent Stewart Platform built
at Oregon State University.
The ends of the legs in the base are arranged in a

plane, as are the ends of the legs in the platform. The
six points in each of these planes are arranged in semi-
regular hexagons, as shown in Fig. 12. If regular hexa-
gons are used in both base and platform, the equations
derived above do not hold; screw theory can be used
to verify this fact. The planes in which these hexagons
lie are the z = 0 planes in the base and platform coor-
dinate systems. The vector representations of the six
points in the base can now be written as follows: (Note
that in the following equations the terms in square
brackets are the components of vectors.)

Fig. 11. Two views of the
most recent Stewart Platform
btsilt at Oregon State Univer-
sity.

where
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Fig. 12. Simplified Stewart
Platforjn. A. The six points
in the base. B. The six points
in the platform.

In the above equation, the c and s prefixes of the angles
stand for cosine and sine respectively. Vector repre-
sentations of the six points in the platform can be
written in a similar way.

where

This mechanism is further simplified by setting the

angle ~P to 3 radians as on the right above. As Fig. 13
3

shows, this makes the points in the platform coincide
in pairs.

5.1. LEG VECTORS AND LEG MOMENTS

This arrangement of points allows a certain amount of
simplification in the leg vector and leg moment equa-
tions. The leg vector Eq. (11) can be rewritten as fol-
lows as three component scalar equations:

The leg moment Eq. (14) can be rewritten as follows:
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Fig. J 3. The kinematic ar-

rangement of the simplified
Stewart Platfbrm with trian-
gular platform is shown in
top, ,~~ont, rigfit side, and
pictorial views.

This equation can be expanded into three scalar equa-
tions as follows:

The leg vector and leg moment equations referenced
to the platform coordinate system also simplify. Equa-
tion (15) for the leg vector is rewritten below.

This equation is further expanded below:

Equation (19) for the leg moment is rewritten below.

5.2. FORCES EXERTED BY LEGS

What are the forces in the legs in this simplified Stew-
art Platform? Take the simple example with no rota-
tion and translation only in the z-direction to see how
the general equations presented above work. This is
the position illustrated in Fig. 13.
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With these values for rotation and translation, Eq.
(51 ) for the leg vector and Eq. (52) for the leg moment
simplify as follows:

Make the further assumptions that there is no external
force, that the platform is not accelerating, and that
the force due to gravity is a vector in the platform - z
direction with unit magnitude. Then the leg force Eq.
(44) is as follows:

For example, let r, = 5, rB = 15, QB = 10°, and
T, = 20. The above equation becomes:

When this equation is solved for f, f6, each of the leg
forces is found to be 0.196. They must be all the same
because of symmetry. This is the correct value since
the vertical component of the force is 0.85 X 0.196,
which multiplied by 6 equals 1.

5.3. STEWART PLATFORM LEG MECHANISM

Up to this point, the Stewart Platform has been con-
sidered to be two bodies connected by six legs with
each leg connected to each body by a ball-and-socket
joint. Figure 13 shows the manipulator now being
considered with six distinct points in the base and the
six points in the platform coinciding in pairs. Notice
that there are three triangles supporting the platform,
B1B2P12, ~384’~34~ and B5B6p,6, In each triangle the
point Pij can lie anywhere in the plane of the support-
ing triangle (within the mechanical limits). Each trian-
gle can rotate about the line BIBj, allowing each point
Pi) to be positioned anywhere in space.

Since the points Pij move in a plane, any mechanism
that moves a point in a plane can be substituted for
the triangle. Figure 14 shows some possibilities includ-
ing the present one; the controlled variables are all
labeled. With each of these possibilities except for the
present one, there is the mechanical disadvantage of
depending on bending moments for support. With the
present arrangement, the platform load is supported
by tension or compression of the legs.
A second implication of this view of the mechanism
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Fig. 14. Four mechanisms
that positlan a point in a
plane. A. The one used in the
Stewart P’latform.

is illustrated in Fig. 15, where the lines BiB) have
been extended to their intersections at points B mn’ If
the original supporting triangles were replaced with
B6,B23P,2, and so forth, the motion of the platform
would not change since the points P~~ that define plat-
form position and orientation still move in the same
plane rotating about the same line in the base. How-
ever, the lengths, velocities, and forces required of the
actuators would change.
The Stewart Platform manipulators built at Oregon

State University have all used screw jacks driven by
electric motors as leg actuators. This design has the
advantage of being light and easy to control. Velocity
and position control can be done using shaft encoders
and tachometers. Friction can be minimized in a
screw drive by using a ball screw, and the backlash in
the ball screw can be eliminated by using double nuts
preloaded with spring washers. It was noted above
that, in general, using screw joints in the legs means
that each leg will apply a couple to the platform. This
is not true when adjacent legs are connected together
to form triangles. In this case, each leg in a connected
part counteracts the couple exerted by the other leg in
the pair. The platform is effectively supported by six
pure forces.
The ends of the legs should be mounted on gimbals

(Hooke joints), not on ball-and-socket joints. If it is
designed properly, a gimbal gives a much greater range
of motion than a ball-and-socket joint. Figure 16
shows photographs of the base and platform gimbals

Fig. J 5. The platform of a ’

simplified Stewart Platform
has the same motion as it
would if the base of the
mechanism were a triangle
produced by extending the
long sides of the semiregular
hexagonal base.

on the last Stewart Platform built at Oregon State
University. The platform gimbal is doubled to make
the platform ends of two adjacent legs coincident. The
platform gimbal has a third axis perpendicular to the
platform plane, which makes it equivalent to a double
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Fig. 16. Some views qf the
joints at the ends of the legs
of the most recent Stewart
Platforna built at Oregon
State University. A. Two
views of the gimbal joint at
the base. B. Two views of the

gimbal joint at the platform.
The gimbal joint at the
pla4form consists of a double
Hooke joint and a pivot
perpendicular to the platform .

plane.

ball joint. The base gimbal has the first revolute axis
inclined to the base plate to increase the useful range of
motion of the joint.

Figure I 7 illustrates one of the leg triangles. The leg
pivot at the base, at the intersection of the two revo-
lute axes of the gimbal, is near the average center of
mass of the leg/motor combination. The leg was de-
signed in this way to minimize the bending of the leg
due to its own weight.

5.4. DETERMINING RANGE OF MOTION

A simulation of the Stewart Platform has been written
to investigate some of its kinematics. The limits used
to find the range of motion of the platform in this
simulation are the maximum and minimum lengths
of the legs and a limit on how close the platform hexa-
gon is allowed to come to the base plane. No check is
included for singular positions of the manipulator.
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Fig. 17. The leg triangle of
the mo.st recent Stewart

Platform built at Oregon
State Universitv.

One of the two outputs of the simulation is a plot of
a cross section of the work envelope of the manipula-
tor. These plots are useful for developing an under-
standing of the size and shape of the work envelope.
To make one of these plots, any four of the six param-
eters, x, y, z, roll, pitch, yaw, of the motion of the
platform are held constant while the other two vary.
The most useful results are obtained when roll, pitch,
yaw, and one of the others are held constant; by doing
this front, side, and top views of the work envelope
can be drawn. The simulation has the capability of
plotting multiple cross sections on parallel cutting
planes, thus producing a contour map of the work en-
velope. Some examples of this output are shown in
Fig. 18.

After the plane to work in has been chosen, the
simulation works by finding a point on the boundary
of the work envelope and then following the boundary.
The method of following the boundary is a variation
on the method described by Mason (1956) and Cor-
dray ( 1957).

The other output of the simulation is the extremes
of movement of each one of the joints of any one of
the six legs. For any position of the platform, the posi-
tion and orientation of the final joint in each leg may
be found by a simple transformation. The values for
each of the joint variables for a leg are then determined
by applying the conventional series manipulator solu-
tion. This simulation output has been very useful in

designing and orienting joints. For instance, the depth
of the yoke on the base gimbal and the angle at which
the base gimbal is set were determined in this way.
Another example is the curve in the yokes for the plat-
form gimbal.

This simulation allows the designer to first choose a
range of motion for the platform from a catalog or an
interactive run of the simulation. The results of this
first part of the simulation are size and shape of plat-
form and base planes. Then the joint range of motion
part of the simulation is run to facilitate joint sizing
and orientation.

5.5. SINGULAR POSITIONS

When experimenting with a model Stewart Platform
manipulator, it is not difficult to find two apparently
different varieties of singular position as illustrated in
Figs. 19 and 20. In Fig. 19, all three points on the
platform and the points in the base at the other two
comers of one of the supporting triangles lie in a plane.
The six leg vectors all intersect one line, line P56P,2 in
Fig. 19, a configuration that Hunt ( 1978) has shown
to be a special case always resulting in linear depen-
dence of the six leg vectors. The degree of freedom
gained is a pure rotation about the line that all six leg
vectors intersect.

This singular position of the mechanism is reached
by a rotation about the y-axis. When the platform is a
triangle, the angle of this rotation can be obtained
from the geometry, as shown in Fig. 21. The equation
follows:

In this equation, the rotation about the y-axis de-
pends only on the translation in the x and z directions.
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The y-tr4nslation is arbitrary, and the rotation of the
platform about the platform z-axis is also arbitrary.
Changes in these two parameters leave the six leg vec-
tors intersecting the same line.
The equation above specifies a rotation about the

y-axis to reach this singular position. From symmetry,
there are two other lines that can be rotated about to
reach similar singular positions. These require some
combination of rotations about the x-axis and the

y-axis.
The degree of freedom gained in the singular posi-

tion illustrated in Fig. 20 is a screw motion of the
platform about the platform z-axis. Examine the 6 X 6
matrix of Plucker coordinates of the leg lines to deter-
mine the characteristics of this singularity. The rota-
tion and translation are given below:

The unnormalized Plfcker coordinates are written.

These equations are simplified as follows:

These six equations each form a row of the matrix as i
varies from I to 6. Since the third row of the matrix is

constant, another constant row will make the determi-

 at UNIV TORONTO on November 10, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


179

Fig. 19. The top, front, and
right side views and a picto-
rial view of the Stewart
Platrorm in a singular posi-
tion. In this position, the

pla4form has gained an extra
degree of freedom, which is a
pure rotation about line

P56P12- *

nant zero. The last row is replaced with the following
linear combination of rows without changing the
value of the determinant:

Substitute for M§~, Miy, and Ml~ from the above
equations and simplify.

What are the values of APr - ABl as i varies from 1 to 6?

Fig. 20. The top, front, and
right side views and a picto-
rial view of the Stewart
Platform in a singular posi-
tion. In this position, the

platf orm has gained an extra
degree of-freedom, which is a
screwing motion about the
pla4form z-axis.

The factor c(Ap; - ABt) is constant for all six values of
i, but the factor s(Apl - AB~) is not constant. Thus, the
last row of the matrix as modified is constant if, and

only if, RZ has the value -~ ~ or - 2 . This result does
not make use of the restrictions imposed by having the
platform a triangle; it is true for the semi-regular hexa-
gon platform.

According to this result, if the platform is positioned
anywhere and rotated one quarter turn in either direc-
tion about the platform z-axis while maintaining its
plane parallel to the base plane, then the manipulator
is in a singular position. This is easy to verify by build-
ing a paper model, which can be done by making
eight triangles of the appropriate shape and fastening
them together with tape. The resulting model will
move a small amount. This is an interesting verifica-
tion of the usefulness of screw theory since the com-
mon wisdom says that closed forms built only of trian-
gles are rigid.
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Fig. 21. The top, , front, and
right side views and a picto-
rial view of the Stewart
~’lat/orm in a singular posi-
tion. The derivation of the
formula for this singular
position i.s illustrated.

6. Conclusions

This paper presents the necessary equations for use of
the Stewart Platform as a robot manipulator. Equa-
tions for the completely general case and for a special,
more practical, case have been discussed. This has
been a completely theoretical presentation in the sense
that no consideration has been given to the real-time
solution of the equations.
The Stewart Platform appears to have some advan-

tages over more conventional manipulator designs in
certain situations (Fichter and McDowell 1980). The
equations presented here allow control of position,
velocity, and force.
There are several areas needing further work.

Among these are force control, dynamics, and singular
positions. These topics will be discussed in greater
depth in future publications.
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Appendix

A; angular velocity of leg i; referenced to the
, 

base coordinate system
pA; angular velocity of leg i; referenced to the

platform coordinate system
A~; angle from the x-axis of the base coordi-

nate system to the line connecting the
origin to point B,

A,i angle from the x-axis of the platform
coordinate system to the line connecting
the origin to point Pi

Pa vector acceleration of the platform; refer-
enced to the platform coordinate system

Bi vector description of the end of leg i in
the base; referenced to the base coordi-
nate system

PB; vector description of the end of leg i in
the base; referenced to the platform coor-
dinate system

C couple vector
PC E couple vector exerted on the platform by

the external world; referenced to the
platform coordinate system

~C~ I couple vector exerted on the platform by
the inertia of the platform; referenced to
the platform coordinate system

PCi couple vector exerted on the platform by
. leg i; referenced to the platform coordi-

nate system
D, N, S vectors .

F force vector

pFE force vector exerted on the platform by
the external world; referenced to the
platform coordinate system

pF~ force vector exerted on the platform by
the gravity field; referenced to the plat-
form coordinate system

PF I force vector exerted on the platform by
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the inertia of the platform; referenced to
the platform coordinate system

pF; ¡ force vector exerted on the platform by
leg i; referenced to the platform coordi-
nate system

f magnitude of force vector; intensity of
. wrench

f vector made up of the magnitudes of the
six forces exerted by the legs on the plat-
form

Pg vector acceleration of the platform due to
the gravity field; referenced to the plat-
form coordinate system

h pitch of the ISA
h’ pitch of wrench
PI inertia tensor of the platform about the

platform coordinate system
ISA instantaneous screw axis
M moment of vector about the origin nor-

malized with respect to the magnitude of
the vector

M’ moment of vector about the origin
Mi normalized moment of vector Si about

the origin of the base coordinate system;
moment vector of leg i in the base coor-
dinate system; referenced to the base
coordinate system

PM¡ normalized moment of vector S; about
the origin of the platform coordinate
system; moment vector of leg i in the
platform coordinate system; referenced
to the platform coordinate system

PM* 3 X 6 matrix in which each column is the
normalized moment vector of one of the

legs; referenced to the platform coordi-
nate system

m mass of the platform
Pi vector description of the end of leg i in

the platform; referenced to the base coor-
dinate system

PPi vector description of the end of leg i in
the platform; referenced to the platform
coordinate system

Pi velocity of the point at the platform end
of leg i; referenced to the base coordinate
system

Q point

R rotation matrix that describes the orien-
tation of the platform relative to the base;
also used to transform free and line vec-
tors from the base coordinate system to
the platform coordinate system; refer-
enced to the base coordinate system

PR rotation matrix that describes the orien-
tation of the base relative to the platform;
also used to transform free and line vec-
tors from the platform coordinate system
to the base coordinate system; referenced
to the platform coordinate system 

&dquo;

Rx, Ry, Rz description of the orientation of the plat-
form as rotations about the platform
x-axis, y-axis, and z-axis

rB distance from the origin of the base coor-
dinate system to points B;, i = 1 ... 6

rP distance from the origin of the platform
coordinate system to points P;, i =
1 ... 6

S; i vector from the end of leg i in the base to
the end of leg i in the platform; refer-
enced to the base coordinate system

pS; i vector from the end of leg i in the base to
the end of leg i in the platform; refer- 

°

. 

enced to the platform coordinate system
S; ¡ vector velocity of leg i; referenced to the

. 

base coordinate system
P§i vector velocity of leg i; referenced to the

platform coordinate system
s unit vector in the direction of vector S

s; i unit vector along leg i in the direction
from the base toward the platform; refer-
enced to the base coordinate system

~s, ¡ unit vector along leg i in the direction
from the base toward the platform; refer-
enced to the platform coordinate system

§; component of the vector velocity of leg i
that is perpendicular to the direction of
the leg; vector rate of change of direction
of leg i; referenced to the base coordinate
system

ps; component of the vector velocity of leg i
that is perpendicular to the direction of
the leg; vector rate of change of direction
of leg i; referenced to the platform coor-
dinate system
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Ps* 3 X 6 matrix in which each column is the
unit vector of one of the legs; referenced
to the platform coordinate system

(J ¡ magnitude of vector S;; length of leg i;
actuator coordinate

dri magnitude of the component of the vec-
tor velocity of leg i that is parallel to the
direction of the leg; rate of change of
length of leg i; actuator velocity

T translation vector that describes the posi-
tion of the platform relative to the base;
the vector from the origin of the base
coordinate system to the origin of the
platform coordinate system; referenced
to the base coordinate system

PT translation vector that describes the posi-
. tion of the base relative to the platform;

the vector from the origin of the platform
coordinate system to the origin of the
base coordinate system; referenced to the
platform coordinate system

U Plucker coordinates of a line normalized
with respect to the magnitude of the vec-
tor formed by the first three components
of the Plfcker coordinates; made up of
the aLee components of the unit vector

alc..ig the line and the three components
of the moment of the unit vector about
the origin

U’ Plfcker coordinates of a line; made up of
the three components of a vector along
the line and the three components of the
moment of that vector about the origin

U; normalized Plucker coordinates of leg i;
referenced to the base coordinate system

~Ui normalized Pliicker coordinates of leg i;
referenced to the platform coordinate
system

PU* 6 X 6 matrix in which each column is the
normalized Plfcker coordinate vector of
one of the legs; referenced to the plat-
form coordinate system

V velocity of a body along the ISA
V’ velocity of an arbitrary point in a body
oi angular velocity vector of a body about

the ISA
Pro angular velocity vector of the platform;

referenced to the platform coordinate
system

P6 rate of change of angular velocity vector
of the platform; angular acceleration
vector of the platform; referenced to the
platform coordinate system
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